汤帅奇


电子邮箱:  shuaiqi.tang@nju.edu.cn
办公室: yl6809永利官网A201


  汤帅奇,yl6809永利官网准聘副教授,博导,国家级青年人才。主要从事降水、云、气溶胶及其相互作用等大气物理过程的研究工作,致力于建立地球系统模式与大气外场观测实验之间的桥梁,从观测与模式两个方面认识大气中的降水、云、气溶胶及其相互作用,理解、评估并改进地球系统模式中的相关物理过程。入选2023年国家高层次青年人才计划,在大气科学领域权威期刊发表学术论文30余篇。

汤帅奇的研究组长期招收博士后、博士和硕士研究生,有意者请邮件联系。

教育经历
  • 博士(大气科学), 2015, 美国纽约州立大学石溪分校(石溪大学)海洋与大气学院

  • 硕士(大气科学), 2010, 北京大学大气科学系

  • 学士(大气科学), 2007, 北京大学大气科学系(元培计划)


工作经历
  • 准聘副教授/至诚青年教授, 2024.3 -  今,  yl6809永利官网

  • Research Scientist,    2020.8 - 2024.2, 美国西北太平洋国家实验室

  • Research Scientist,    2015.6 - 2020.8, 美国劳伦兹利弗莫尔国家实验室

研究兴趣

通过大气外场观测地球系统模式研究大气中的降水、云、气溶胶及其相互作用,具体包括:

1.   大气对流系统热动力结构的观测分析

2.   气候模式模拟对流降水的诊断评估与误差归因

3.   气溶胶-云观测特征分析

4.   气溶胶-云相互作用及其影响因素的模式分析

科研项目
 2024-2027国家高层次青年人才项目,主持
 2024-2027南京大学引进人才自主启动课题项目,主持
近五年论文


in review:

  • Meng Huang, Po-Lun Ma, Jerome Fast, ... Tang, S., et al. (2024). Evaluation of E3SM simulated aerosols and aerosol-cloud interactions across GCM and convection-permitting scales. Submitted to JAMES.DOI: 10.22541/essoar.173179990.05795821/v1

2024:

  • Tang, Shuaiqi, H. Wang, X. Y. Li, J. Chen et al., (2024): Understanding aerosol–cloud interactions using a single-column model for a cold-air outbreak case during the ACTIVATE campaign, Atmos. Chem. Phys., 24, 10073–10092, https://doi.org/10.5194/acp-24-10073-2024.

  • Mei, F., Comstock, J. M., Pekour, M. S., Fast, J. D., Schmid, B., Gaustad, K. L., Tang, S., et al. (2024): Atmospheric Radiation Measurement (ARM) airborne field campaign data products between 2013 and 2018, Earth Syst. Sci. Data, 16, 5429–5448, https://doi.org/10.5194/essd-16-5429-2024.

  • Ovchinnikov, M., Ma, P.-L., Kaul, C. M., Pressel, K. G., Huang, M., Shpund, J., & Tang, S. (2024). Evaluation of autoconversion representation in E3SMv2 using an ensemble of large-eddy simulations of low-level warm clouds. Journal of Advances in Modeling Earth Systems, 16, e2024MS004280. https://doi.org/10.1029/2024MS004280.

  • Zhao, B., Donahue, N.M., Zhang, K., ... Tang, S., et al. (2024). Global variability in atmospheric new particle formation mechanisms. Nature. https://doi.org/10.1038/s41586-024-07547-1.

  • Li X., H. Wang, J. Chen, S. Tang, S. Kirschler, E. Crosbie, and L.D. Ziemba, et al. (2024). Process Modeling of Aerosol-cloud Interaction in Summertime Precipitating Shallow Cumulus over the Western North Atlantic. Journal of Geophysical Research: Atmospheres. 129, e2023JD039489. https://doi.org/10.1029/2023JD039489

  • Tao, C., Xie, S., Ma, H.-Y., Tang, S., et al., (2024). Diurnal cycle of precipitation over the tropics and central United States: intercomparison of general circulation models. Quarterly Journal of the Royal Meteorological Society, 150, 911–936. https://doi.org/10.1002/qj.4629

2023:

  • Tang, Shuaiqi, Varble, A. C., Fast, J. D., Zhang, K., Wu, P., Dong, X., Mei, F., Pekour, M., Hardin, J. C. and Ma, P.-L. (2023). Earth System Model Aerosol-Cloud Diagnostics Package (ESMAC Diags) Version 2: Assessments of Aerosols, Clouds and Aerosol-Cloud Interactions Through Field Campaign and Long-Term Observations, Geosci. Model Dev. 16, 6355–6376, https://doi.org/10.5194/gmd-16-6355-2023, 2023.

  • Varble, A. C., P.-L. Ma, M. Christensen, J. Mülmenstädt, S. Tang and J. D. Fast (2023). Evaluation of Liquid Cloud Albedo Susceptibility in E3SM Using Coupled Eastern North Atlantic Surface and Satellite Retrievals. Atmos. Chem. Phys. 23, 13523–13553, https://doi.org/10.5194/acp-23-13523-2023, 2023.

  • Matsui, T., D. B. Wolff, S. Lang, K. Mohr, M. Zhang, S. Xie, S. Tang, et al. (2023). Systematic Validation of Ensemble Cloud-Process Simulations using Polarimetric Radar Observations and Simulator over the NASA Wallops Flight Facility. Journal of Geophysical Research: Atmospheres, 128, e2022JD038134. https://doi.org/10.1029/2022JD038134.

  • Tao, C., Xie, S., Tang, S., Lee, J., Ma, H.-Y., Zhang, C., and Lin, W., (2023): Diurnal cycle of precipitation over global monsoon systems in CMIP6 simulations, Clim Dyn, https://doi.org/10.1007/s00382-022-06546-0.

2022:

  • Tang, Shuaiqi, Fast, J. D., Zhang, K., Hardin, J. C., Varble, A. C., Shilling, J. E., Mei, F., Zawadowicz, M. A., and Ma, P.-L. (2022). Earth System Model Aerosol-Cloud Diagnostics Package (ESMAC Diags) Version 1: Assessing E3SM Aerosol Predictions Using Aircraft, Ship, and Surface Measurements, Geosci. Model Dev. 15, 4055–4076, https://doi.org/10.5194/gmd-15-4055-2022

  • Tang, Shuaiqi, S. Xie, H-Y. Ma, et al., (2022). Long-Term Single-Column Model Intercomparison on Diurnal Cycle of Precipitation Over Tropical and Mid-Latitude Land. Quarterly Journal of the Royal Meteorological Society, 148, 641– 669. https://doi.org/10.1002/qj.4222

2021:

  • Ciesielski, P. E., R. H. Johnson, S. Tang, Y. Zhang, & S. Xie, (2021).  Comparison of Conventional and Constrained Variational Methods for Computing Large-Scale Budgets and Forcing Fields. J Geophys Res-Atmos, 126, e2021JD035183. https://doi.org/10.1029/2021JD035183

  • Tang, Shuaiqi, P. J. Gleckler, S. Xie, J-W Lee, C. Covey, C. Zhang et al., (2021). Evaluating Diurnal and Semi-Diurnal Cycle of Precipitation in CMIP6 Models Using Satellite- and Ground-Based Observations. Journal of Climate, 34, 3189-3210, 10.1175/jcli-d-20-0639.1.

  • Zhang, C., Xie, S., Tao, C., Tang, S., Emmenegger, T., Neelin, J. D., Schiro, K. A., Lin, W., and Shaheen, Z. (2021): Evaluating Climate Models: The ARM Data-Oriented Metrics and Diagnostics Toolkit, Bulletin of the American Meteorological Society, 102, 347-350, https://doi.org/10.1175/bams-d-20-0282.A.

  • Cheng Tao, Y. Zhang, Q. Tang, H-Y. Ma, V. P. Ghate, S. Tang, S. Xie and J. A. Santanello (2021). Land–Atmosphere Coupling at the U.S. Southern Great Plains: A Comparison on Local Convective Regimes between ARM Observations, Reanalysis, and Climate Model Simulations, Journal of Hydrometeorology, 22(2), 463-481, https://doi.org/10.1175/jhm-d-20-0078.1.

  • Hsi-Yen Ma, K. Zhang, S. Tang, S. Xie and R. Fu (2021). Evaluation of the causes of wet-season dry biases over Amazonia in CAM5. Journal of Geophysical Research: Atmospheres, 126, e2020JD033859. https://doi.org/10.1029/2020JD033859

2020:

  • Chengzhu Zhang, S. Xie, C. Tao, S. Tang, T. Emmenegger, J. D. Neelin, K. A. Schiro, W. Lin and Z. Shaheen, (2020), The ARM Data-Oriented Metrics and Diagnostics Package for Climate Models: A New Tool for Evaluating Climate Models with Field Data. Bull. Amer. Meteor. Soc., 101, E1619–E1627, https://doi.org/10.1175/BAMS-D-19-0282.1.

  • Peter A. Bogenschutz, S. Tang, P. M. Caldwall, S. Xie, W. Lin and Y. Chen. (2020). The E3SM version 1 Single Column Model. Geosci. Model Dev., 13, 4443–4458, https://doi.org/10.5194/gmd-13-4443-2020.

  • Tang, Shuaiqi, S. Xie, M. Zhang and S. Endo, (2020). The Impact of Terrain-Following Coordinate to the Large-Scale Forcing and Shallow-Cumulus Simulations at the ARM SGP site. Journal of Geophysical Research: Atmospheres, 125, e2020JD032492. https://doi.org/10.1029/2020JD032492

  • Yi-Chi Wang, S. Xie, S. Tang and W. Lin, (2020), Evaluation of an Improved Convective Triggering Function: Observational Evidence and SCM Tests. Journal of Geophysical Research: Atmospheres, 125, e2019JD031651. https://doi.org/10.1029/2019JD031651

其他代表论文

  • Tang, Shuaiqi, Xie, S., Zhang, M., Tang, Q., Zhang, Y., Klein, S. A., et al. (2019). Differences in eddy‐correlation and energy‐balance surface turbulent heat flux measurements and their impacts on the large‐scale forcing fields at the ARM SGP site. Journal of Geophysical Research: Atmospheres. 124, 3301– 3318. https://doi.org/10.1029/2018JD029689

  • Tang, Shuaiqi, M. Zhang, and S. Xie, 2017: Investigating the Dependence of SCM Simulated Precipitation and Clouds on the Spatial Scale of Large-Scale Forcing at SGP. J. Geophys. Res. Atmos., 122, doi:10.1002/2017JD026565

  • Tang, Shuaiqi, et al., 2016: Large-Scale Vertical Velocity, Diabatic Heating and Drying Profiles Associated with Seasonal and Diurnal Variations of Convective Systems Observed in the GoAmazon2014/5 Experiment, Atmos. Chem. Phys., 16(22), 14249-14264, doi: 10.5194/acp-16-14249-2016.

  • Tang, Shuaiqi, M. Zhang, and S. Xie, 2016: An ensemble constrained variational analysis of atmospheric forcing data and its application to evaluate clouds in CAM5, Journal of Geophysical Research: Atmospheres, 121(1), 33-48, doi: 10.1002/2015JD024167.

  • Tang, Shuaiqi, and M. Zhang, 2015: Three-dimensional constrained variational analysis: Approach and application to analysis of atmospheric diabatic heating and derivative fields during an ARM SGP intensive observational period, Journal of Geophysical Research: Atmospheres, 120(15), 7283-7299, doi: 10.1002/2015JD023621.

荣誉奖励

  • Group Achievement Award to ACTIVATE Earth Venture Sub-orbital Mission, NASA, 2023

  • Physical and Life Sciences Directorate Award for improving our ability to model one of climate’s most challenging aspects: precipitation. LLNL, April 16, 2020

  • Deputy Director for Science and Technology Excellence in Publication Award, LLNL, 2019

  • Physical and Life Sciences Directorate Award for improving our understanding of the role of clouds, radiation, and precipitation processes in contributing to surface temperature biases. LLNL, August 15, 2018

开发数据/工具

  • ARM large-scale forcing from the constrained variational analysis (VARANAL)

  • Three-dimensional large-scale forcing data from the 3D constrained variational analysis (VARANAL3D)

  • Quality-controlled eddy-correlation flux measurements (QCECOR)

  • ARM best estimate data (ARMBE)

  • Earth system model aerosol-cloud diagnostics package (ESMAC Diags) (githubpaper1paper2)



  • 南京大学仙林校区大气科学楼
    江苏省南京市栖霞区仙林大道163号
    210023