朱延年 副教授 博导

Email: yannian.zhu@nju.edu.cn


个人简介

      朱延年,陕西西安人,yl6809永利官网副教授,博士生导师。本科毕业于西北大学,硕士和博士分别毕业于比利时鲁汶大学和北京师范大学。曾就职于陕西省气象科学研究所,20217月正式进入yl6809永利官网工作。研究领域主要围绕气溶胶--降水相互作用,卫星反演云微物理参数,卫星定量应用等方面展开。主持国家自然科学基金面上项目3项,重点研发子课题2项,骨干身份参加国家级项目5项。获得陕西青年科技标兵和第十三届陕西青年科技奖。担任中国气象学会人影专业委员会委员、江苏省气象学会大气物理委员会委员、瑞士基金委海外评审专家和多个国际期刊审稿人。在卫星定量反演云微物理参数、气溶胶-云相互作用、气溶胶间接气候效应等方面取得了多项具有国际影响力的成果,被IPCC第六次报告、ScienceNaturePNAS等高影响刊物多次引用,迄今已经发表SCI论文共60余篇,第一、通讯作者24篇,其中在ScienceNature Communications发表第一、通讯作者文章共2SCI总引用1900余次,H-index22

课题组欢迎优秀学子加盟,email: yannian.zhu@nju.edu.cn

教育、访学经历

博士 全球变化与地球科学系统学研究院 北京师范大学

硕士 Advanced Studies Master of Science in Earth Observation 比利时鲁汶大学

本科 地理信息系统与地图学 西北大学

访问学者 以色列希伯来大学 导师:Daniel Rosenfeld教授

工作经历

2002 - 2021 陕西省气象科学研究所

2008 - 2009 EUROPEAN COMMISSION, DIRECTORATE GENERAL JRC, JOINT RESEARCH CENTRE-ISPRA,研究助理

2021 - 至今 yl6809永利官网

发表的文章

    2025 部分更新

  1. Satellite‐retrieved cloud base droplet number concentration improved by in‐cloud adiabatic fraction
    Wang, Y., Zhu, Y.*, Rosenfeld, D., Wang, M., Lu, X.
    Journal of Geophysical Research: Atmospheres, 130(15), e2025JD043789, 2025.

  2. Parameterization of shallow cumulus entrainment and detrainment rates using global satellite observations: Physical and machine learning approaches
    Zhu, L., Lu, C*., Xiao, D., Gao, S., Wang, Y., Zhu, Y.*, et al.
    Geophysical Research Letters, 52, e2025GL117775, 2025. DOI.

  3. Satellite retrievals show adiabatic fraction of marine low clouds decreasing with increasing temperature and height above cloud base
    Lu, X., Rosenfeld, D., Zhu, Y.*, Mao, F., Pan, Z., Zang, L., Gong, W.
    Journal of Geophysical Research: Atmospheres, 130(5), e2024JD043178, 2025.

  4. Volcanic aerosols lend causality to the indicated substantial susceptibility of clouds to aerosol over global oceans
    Wang, X., Mao, F., Rosenfeld, D., Zhu, Y.*, Pan, Z., Cao, Y., Zang, L., Lu, X., Gong, W.
    npj Climate and Atmospheric Science, 8(1), 130, 2025. DOI.

  5. The dominant role of aerosol’s CCN effect in cloud glaciation
    Munawar, I., Zhu, Y.*, Wang, M.*, Rosenfeld, D., Liu, J., Wang, Y.
    npj Climate and Atmospheric Science, 8(1), 121, 2025. DOI.

  6. Summertime long-term trends in cloud phase over the Tibetan Plateau: Transition from supercooled to ice clouds
    Zhang, Y., Wang, M.*, Zhu, Y.*, Rosenfeld, D., Wu, X., Cao, Y., Huang, K.-E.
    Geophysical Research Letters, 52(12), e2025GL115132, 2025. DOI.

  7. A global classification dataset of daytime and nighttime marine low-cloud mesoscale morphology based on deep-learning methods
    Wu, Y., Liu, J., Zhu, Y.*, Zhang, Y., Cao, Y., Huang, K. E., Zheng, B., Wang, Y., Li, Y., Rosenfeld, D.
    Earth System Science Data, 17(7), 3243-3258, 2025.

  8. Marine stratocumulus clouds with more coarse sea spray aerosols are brighter
    Liu, F., Mao, F., Rosenfeld, D., Pan, Z., Zang, L., Zhu, Y., Gong, W.
    Geophysical Research Letters, 52(7), e2024GL113718, 2025.

  9. Implementation and evaluation of physics‐driven dynamic entrainment‐mixing parameterization in a climate model and its impact on low‐cloud simulation
    He, X., Lu, C., Liu, Y., Zhu, Y., Peng, Y., Zhu, L., Xu, X., Luo, S., Wang, H., Li, T., Li, J., Wang, M.
    Journal of Geophysical Research: Atmospheres, 130(6), e2024JD041918, 2025.

  10. The role of relative humidity in estimating cloud condensation nuclei number concentration through aerosol optical data: Mechanisms and parameterization strategies
    Wang, Y., Zhang, R., Wang, N., Xu, J., Zhang, J., Cui, C., Lu, C., Zhu, B., Sun, Y., Yang, J., Guo, J., He, X., Zhu, Y., Zhang, Y., Li, J., Guo, J., He, X., Lu, C., Wang, M.
    Geophysical Research Letters, 52(8), e2024GL112734, 2025.

  11. Estimation of entrainment and detrainment rates in cumulus clouds using global satellite observations
    Zhu, L., Wang, Y., Zhu, Y., He, X., Li, J., Wang, Y., Zhou, Y., Lu, C.
    Geophysical Research Letters, 52(4), e2024GL113780, 2025.

  12. Cleansing Beijing air pollution by extensive precipitation leads to marine‐like clouds with warm rain
    Zhao, D., Wang, M., Rosenfeld, D., Chen, B., Zhu, Y., Cai, M., Duan, J., Liu, D., Hu, K., Ding, S., Wu, X., Huang, M.
    Journal of Geophysical Research: Atmospheres, 130(3), e2024JD042403, 2025.

  13. Lightning declines over shipping lanes following regulation of fuel sulfur emissions
    Wright, C. J., Thornton, J. A., Jaeglé, L., Cao, Y., Zhu, Y., Liu, J., Jones II, R., Wang, M., Rosenfeld, D.
    Atmospheric Chemistry and Physics, 25(5), 2937-2946, 2025.

  14. 2024

  15. Improving prediction of marine low clouds using cloud droplet number concentration in a convolutional neural network
    Cao, Y., Zhu, Y.*, Wang, M.*, Rosenfeld, D., Zhou, C., Liu, J., Liang, Y., Huang, K. E., Zhang, Y., Zhang, H.
    Journal of Geophysical Research: Machine Learning and Computation, 1(4), e2024JH000355, 2024.

  16. The impact of temperature on the adiabaticity and coverage of a single shallow cumulus cloud
    Huang, K. E., Wang, M., Rosenfeld, D., Zhu, Y., Ouyang, X.
    Journal of Geophysical Research: Atmospheres, 129(22), e2024JD041585, 2024.

  17. Cloud susceptibility to aerosols: Comparing cloud‐appearance versus cloud‐controlling factors regimes
    Liu, J., Zhu, Y.*, Wang, M.*, Rosenfeld, D., Cao, Y., Yuan, T.
    Journal of Geophysical Research: Atmospheres, 129(14), e2024JD041216, 2024.

  18. Hidden large aerosol‐driven cloud cover effect over high‐latitude ocean
    Wang, X., Mao, F.*, Zhu, Y.*, Rosenfeld, D., Pan, Z., Zang, L., Lu, X., Liu, F., Gong, W.
    Journal of Geophysical Research: Atmospheres, 129(13), e2023JD039312, 2024.

  19. Aerosol‐cloud interactions near cloud base deteriorating the haze pollution in East China
    Qi, X., Zhu, C., Chen, L., Chi, X., Wang, J., Niu, G., Lai, S., Nie, W., Zhu, Y., Huang, X., Liu, Z., Ding, A.
    Geophysical Research Letters, 51(12), e2024GL109975, 2024.

  20. Effects of smoke on marine low clouds and radiation during 2020 western United States wildfires
    Dong, L., Wang, M., Rosenfeld, D., Zhu, Y., Wang, Y., Dong, X., Liu, Z., Wang, H., Shen, W.
    Atmospheric Research, 302, 107295, 2024.

  21. 2023

  22. Emission reductions significantly reduce the hemispheric contrast in cloud droplet number concentration in recent two decades
    Cao, Y., Zhu, Y.*, Wang, M., Rosenfeld, D., Liang, Y., Liu, J., Liu, Z., Bai, H.
    Journal of Geophysical Research: Atmospheres, 128(2), e2022JD037417, 2023.

  23. Marine warm cloud fraction decreases monotonically with rain rate for fixed vertical and horizontal cloud sizes
    Liu, J., Zhu, Y.*, Wang, M., Rosenfeld, D., Cao, Y.
    Geophysical Research Letters, 50(3), e2022GL101680, 2023.

  24. Robust susceptibility of cloud cover and radiative effects to biases in retrieved droplet concentrations
    Wang, Y., Zhu, Y.*, Wang, M., Cao, Y., Rosenfeld, D.
    Journal of Geophysical Research: Atmospheres, 128(22), e2023JD039145, 2023.

  25. The temperature control of cloud adiabatic fraction and coverage
    Lu, X., Mao, F., Rosenfeld, D., Zhu, Y.*, Zang, L., Pan, Z., Gong, W.
    Geophysical Research Letters, 50(22), e2023GL105831, 2023.

  26. Identification of Supercooled Cloud Water by FY-4A Satellite and Validation by CALIPSO and Airborne Detection
    Xu, X., Zeng, Y., Yu, X., Liu, G., Yue, Z., Dai, J., Hui, Y., Chen, C., Zhu, Y.*
    Remote Sensing, 15(1), 126, 2023.

  27. Extremely high concentrations of ice particles in East Asian dust‐infused baroclinic storm (DIBS) cirrus shield: Dominant role of dust ice nucleation effect
    Zeng, Y., Wang, M., Zhao, C., Zhu, Y., Rosenfeld, D., Huang, K. E.
    Journal of Geophysical Research: Atmospheres, 128(6), e2022JD038034, 2023.

  28. Aircraft observation of fast initiation of mixed phase precipitation in convective cloud over the Tibetan Plateau
    Zhao, D., Wang, M., Rosenfeld, D., Chen, B., Liu, D., Wu, X., Hu, K., Ding, S., Zhu, Y., Ding, D.
    Atmospheric Research, 285, 106627, 2023.

  29. Observing aerosol primary convective invigoration and its meteorological feedback
    Zang, L., Rosenfeld, D., Pan, Z., Mao, F., Zhu, Y., Lu, X., Gong, W.
    Geophysical Research Letters, 50(12), e2023GL104151, 2023.

  30. Obtaining cloud base height and phase from thermal infrared radiometry using a deep learning algorithm
    Wang, Q., Zhou, C., Letu, H., Zhu, Y., Zhuge, X., Liu, C., Weng, F., Wang, M.
    IEEE Transactions on Geoscience and Remote Sensing, 61, 1-14, 2023.

  31. 2022

  32. Coarse sea spray inhibits lightning
    Pan, Z., Mao, F., Rosenfeld, D.*, Zhu, Y.*, Zang, L., Lu, X., Thornton, J. A., Holzworth, R. W., Yin, J., Efraim, A., Gong, W.
    Nature Communications, 13(1), 4289, 2022. DOI.

  33. Satellite‐based detection of secondary droplet activation in convective clouds
    Efraim, A., Lauer, O., Rosenfeld, D., Braga, R. C., Franco, M. A., Kremper, L. A., Zhu, Y.Pöhlker, M. L., Pöhlker, C. O., Pöschl, U., Andreae, M. O. 
    Journal of Geophysical Research: Atmospheres, 127(12), e2022JD036519, 2022.

  34. Regime‐dependent impacts of aerosol particles and updrafts on the cloud concentration nuclei and the enhanced warm rain suppression
    Huang, T., Zhu, Y., Rosenfeld, D., Yang, Y., Lam, D. H., Leung, W., Lee, H. F., Yim, S. H.
    Geophysical Research Letters, 49(3), e2021GL097315, 2022.

  35. Retrieving instantaneous extinction of aerosol undetected by the CALIPSO layer detection algorithm
    Mao, F., Shi, R., Rosenfeld, D., Pan, Z., Zang, L., Zhu, Y., Lu, X.
    Atmospheric Chemistry and Physics, 22(16), 10589-10602, 2022.

  36. Effect of dust on rainfall over the Red Sea coast based on WRF-Chem model simulations
    Parajuli, S. P., Stenchikov, G. L., Ukhov, A., Mostamandi, S., Kucera, P. A., Axisa, D., Gustafson Jr., G. W., Miekinen, R., Zhu, Y.
    Atmospheric Chemistry and Physics, 22(13), 8659-8682, 2022.

  37. The microphysical characteristics of wintertime cold clouds in North China
    Wu, X., Wang, M., Zhao, D., Rosenfeld, D., Zhu, Y., Du, Y., Zhou, W., Tian, P., Hu, K., Ding, S., Wang, F.
    Advances in Atmospheric Sciences, 39(12), 2056-2070, 2022.

  38. 2021

  39. The dependence of ship‐polluted marine cloud properties and radiative forcing on background drop concentrations
    Hu, S., Zhu, Y.*, Rosenfeld, D., Mao, F., Lu, X., Pan, Z., Zang, L., Gong, W.
    Journal of Geophysical Research: Atmospheres, 126(7), e2020JD033852, 2021.

  40. Validation of satellite-retrieved CCN based on a cruise campaign over the polluted Northwestern Pacific ocean
    Wang, Y., Zhu, Y.*, Wang, M., Rosenfeld, D., Gao, Y., Yao, X., Sheng, L., Efraim, A., Wang, J.
    Atmospheric Research, 260, 105722, 2021.

  41. Satellite retrieval of cloud base height and geometric thickness of low-level cloud based on CALIPSO
    Lu, X., Mao, F., Rosenfeld, D., Zhu, Y.*, Pan, Z., Gong, W.
    Atmospheric Chemistry and Physics, 21(15), 11979-12003, 2021.

  42. Climatology of cloud‐top radiative cooling in marine shallow clouds
    Zheng, Y., Zhu, Y., Rosenfeld, D., Li, Z.
    Geophysical Research Letters, 48(19), e2021GL094676, 2021.

  43. Multi-channel Imager Algorithm (MIA): A novel cloud-top phase classification algorithm
    Hu, J., Rosenfeld, D., Zhu, Y., Lu, X., Carlin, J.
    Atmospheric Research, 261, 105767, 2021.

  44. Observational quantification of aerosol invigoration for deep convective cloud lifecycle properties based on geostationary satellite
    Pan, Z., Rosenfeld, D., Zhu, Y., Mao, F., Gong, W., Zang, L., Lu, X.
    Journal of Geophysical Research: Atmospheres, 126(9), e2020JD034275, 2021.

  45. Strong aerosol effects on cloud amount based on long‐term satellite observations over the East Coast of the United States
    Cao, Y., Wang, M., Rosenfeld, D., Zhu, Y., Liang, Y., Liu, Z., Bai, H.
    Geophysical Research Letters, 48(6), e2020GL091275, 2021.

  46. CALIOP retrieval of droplet effective radius accounting for cloud vertical homogeneity
    Zang, L., Rosenfeld, D., Mao, F., Pan, Z., Zhu, Y., Gong, W., Wang, Z.
    Optics Express, 29(14), 21921-21935, 2021.

  47. The evolution of an AgI cloud‐seeding track in Central China as seen by a combination of radar, satellite, and disdrometer observations
    Wang, J., Yue, Z., Rosenfeld, D., Zhang, L., Zhu, Y., Dai, J., Yu, X., Li, J.
    Journal of Geophysical Research: Atmospheres, 126(11), e2020JD033914, 2021.

  48. 气溶胶对中国中纬度夏季低层风速的影响
    徐小红, 余兴, 朱延年, 戴进, 董自鹏
    高原气象, 40(2), 367-373, 2021.

  49. 2020

  50. Evaluation of cloud and precipitation response to aerosols in WRF‐Chem with satellite observations
    Liu, Z., Wang, M., Rosenfeld, D., Zhu, Y., Bai, H., Cao, Y., Liang, Y.
    Journal of Geophysical Research: Atmospheres, 125(18), e2020JD033108, 2020.

  51. Satellite retrieval of cloud condensation nuclei concentrations in marine stratocumulus by using clouds as CCN chambers
    Efraim, A., Rosenfeld, D.*, Schmale, J., Zhu, Y.
    Journal of Geophysical Research: Atmospheres, 125(16), e2020JD032409, 2020.

  52. Strong precipitation suppression by aerosols in marine low clouds
    Fan, C., Wang, M., Rosenfeld, D., Zhu, Y., Liu, J., Chen, B.
    Geophysical Research Letters, 47(7), e2019GL086207, 2020.

  53. Anthropogenic effects on cloud condensation nuclei distribution and rain initiation in East Asia
    Liu, C., Wang, T., Rosenfeld, D., Zhu, Y., Yue, Z., Yu, X., Xie, S., Li, B., Zhuang, J., Gao, A., Ding, S., Niu, S.
    Geophysical Research Letters, 47(2), e2019GL086184, 2020.

  54. Evaluation of Himawari-8/AHI, MERRA-2, and CAMS aerosol products over China
    Zhang, T., Zang, L., Mao, F., Wan, Y., Zhu, Y.
    Remote Sensing, 12(10), 1684, 2020.

  55. Significant wintertime PM2.5 mitigation in the Yangtze River Delta, China from 2016 to 2019: observational constraints on anthropogenic emission controls
    Wang, L., Yu, S., Li, P., Chen, X., Li, Z., Zhang, Y., Li, M., Mehmood, K., Liu, W., Chai, T., Zhu, Y., Rosenfeld, D., Dutkiewicz, V.
    Atmospheric Chemistry and Physics, 20(23), 14787-14800, 2020.

  56. Relative effects of open biomass burning and open crop straw burning on haze formation over central and eastern China: modeling study driven by constrained emissions
    Mehmood, K., Wu, Y., Wang, L., Yu, S., Li, P., Chen, X., Li, Z., Zhang, Y., Li, M., Liu, W., Rosenfeld, D., Seinfeld, J., Zhu, Y., Yu, X., Alapaty, K., Jacobson, M.
    Atmospheric Chemistry and Physics, 20(4), 2419-2443, 2020.

  57. Enhancement of atmospheric stability by anomalous elevated aerosols during winter in China
    Lu, X., Mao, F., Pan, Z., Gong, W., Zhu, Y., Yang, J.
    Journal of Geophysical Research: Atmospheres, 125(4), e2019JD031734, 2020.

  58. 生态恢复工程对陕北地区生态系统格局的影响
    卓静, 朱延年, 何慧娟, 王娟, 董金芳, 权文婷
    生态学报, 40(23), 8627-8637, 2020.

  59. 2019

  60. Aerosol-driven droplet concentrations dominate coverage and water of oceanic low-level clouds
    Rosenfeld, D.*, Zhu, Y.*, Wang, M., Zheng, Y., Goren, T., Yu, S.
    Science, 363(6427), eaav0566, 2019. DOI.

  61. Microphysical properties of convective clouds in summer over the Tibetan Plateau from SNPP/VIIRS satellite data
    Yue, Z., Yu, X., Liu, G., Dai, J., Zhu, Y., Xu, X., Hui, Y., Chen, C.
    Journal of Meteorological Research, 33(3), 433-445, 2019.

  62. Satellite‐based estimation of cloud top radiative cooling rate for marine stratocumulus
    Zheng, Y., Rosenfeld, D., Zhu, Y., Li, Z.
    Geophysical Research Letters, 46(8), 4485-4494, 2019.

  63. Automated Mapping of Convective Clouds (AMCC) Thermodynamical, Microphysical, and CCN Properties from SNPP/VIIRS Satellite Data
    Yue, Z., Rosenfeld, D., Liu, G., Dai, J., Yu, X., Zhu, Y., Hashimshoni, E., Xu, X., Hui, Y., Lauer, O.
    Journal of Applied Meteorology and Climatology, 58(4), 887-902, 2019.

  64. High-altitude and long-range transport of aerosols causing regional severe haze during extreme dust storms explains why afforestation does not prevent storms
    Guo, P., Yu, S., Wang, L., Li, P., Li, Z., Mehmood, K., Chen, X., Liu, W., Zhu, Y., Yu, X., Alapaty, K.
    Environmental Chemistry Letters, 17(3), 1333-1340, 2019.

  65. Spatio-temporal change of water area in Hongjiannao Lake and the effectiveness of protection measures
    Jing, Z., Yannian, Z., Juan, W., Huijuan, H., Jiye, Z.
    Journal of Desert Research, 39(4), 195, 2019.

  66. 2018 and before

  67. Under what conditions can we trust retrieved cloud drop concentrations in broken marine stratocumulus?
    Zhu, Y.*, Rosenfeld, D., Li, Z.
    Journal of Geophysical Research: Atmospheres, 123(16), 8754-8767, 2018. DOI.

  68. NPP/ⅦRS 卫星反演青藏高原夏季对流云微物理特征
    岳治国, 余兴, 刘贵华, 戴进, 朱延年, 徐小红, 惠英, 陈闯
    气象学报, 76(6), 968-982, 2018.

  69. 6·23 龙卷 FY-2G 卫星云微物理特征分析
    徐小红, 余兴, 朱延年, 刘贵华, 戴进
    高原气象, 37(6), 1737-1748, 2018.

  70. Analysis of influential factors for the relationship between PM2.5 and AOD in Beijing
    Zheng, C., Zhao, C.*, Zhu, Y.*, Wang, Y., Shi, X., Wu, X., Chen, T., Wu, F., Qiu, Y.
    Atmospheric Chemistry and Physics, 17(21), 13473-13489, 2017.

  71. Spatial interpolation methods of annual average precipitation on Qinling Mountains
    Jing, Z., Yannian, Z.
    Arid Land Geography, 40(3), 555-563, 2017.

  72. 秦岭主脊区年降水量空间插值最优方法研究
    卓静, 朱延年
    干旱区地理, 40(3), 555-563, 2017.

  73. Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers
    Rosenfeld, D., Zheng, Y., Hashimshoni, E., Pöhlker, M. L., Jefferson, A., Pöhlker, C., Yu, X., Zhu, Y., Liu, G., Andreae, M. O., Pöschl, U.
    Proceedings of the National Academy of Sciences, 113(21), 5828-5834, 2016.

  74. Separating aerosol microphysical effects and satellite measurement artifacts of the relationships between warm rain onset height and aerosol optical depth
    Zhu, Y.*, Rosenfeld, D., Yu, X., Li, Z.
    Journal of Geophysical Research: Atmospheres, 120(15), 7726-7736, 2015.

  75. 利用卫星分析对流云成冰能力与繁生机制及气溶胶影响
    朱延年*, 余兴, 徐小红, 刘贵华, 戴进
    高原气象, 34(6), 1758-1764, 2015.

  76. Satellite retrieval of convective cloud base temperature based on the NPP/VIIRS Imager
    Zhu, Y.*, Rosenfeld, D., Yu, X., Liu, G., Dai, J., Xu, X.
    Geophysical Research Letters, 41(4), 1308-1313, 2014.

  77. High-resolution (375 m) cloud microstructure as seen from the NPP/VIIRS satellite imager
    Rosenfeld, D., Liu, G., Yu, X., Zhu, Y., Dai, J., Xu, X., Yue, Z.
    Atmospheric Chemistry and Physics, 14(5), 2479-2496, 2014.

  78. 基于 GIS 的陕西省酿酒葡萄气候区划
    杨文峰, 朱琳, 李星敏, 朱延年, 周辉
    干旱地区农业研究, 32(3), 244-249, 2014.

  79. 陕西油菜生态气候适宜性分析与精细化区划
    梁轶, 李星敏, 周辉, 朱延年, 颜胜安
    中国农业气象, 34(01), 50, 2013.

  80. 基于 GIS 的棉花气候适宜性区划
    张永红, 李星敏, 葛徽衍, 李博文, 周辉, 朱延年, 贺文丽
    陕西气象, 5, 29-32, 2013.

  81. Analysis on satellite retrieval of cloud structure in a severe squall line process
    Xu, X., Yu, X., Zhu, Y., Liu, G., Dai, J., Yue, Z.
    高原气象, 31(1), 258-268, 2012.

  82. 卫星遥感人工增雨作业条件 Ⅰ: 对流云
    徐小红, 余兴, 朱延年, 刘贵华, 戴进, 岳治国
    气候与环境研究, 17(6), 747-757, 2012.

  83. 一次强飑线云结构特征的卫星反演分析
    徐小红, 余兴, 朱延年, 刘贵华, 戴进, 岳治国
    高原气象, 31(1), 258-268, 2012.

  84. 卫星遥感人工增雨作业条件 Ⅱ: 层状云
    刘贵华, 余兴, 岳治国, 戴进, 徐小红, 朱延年
    气候与环境研究, 17(6), 758-766, 2012.

  85. Glaciation temperatures of convective clouds ingesting desert dust, air pollution and smoke from forest fires
    Rosenfeld, D., Yu, X., Liu, G., Xu, X., Zhu, Y., Yue, Z., Dai, J., Dong, Z., Dong, Y., Peng, Y.
    Geophysical Research Letters, 38(21), L21804, 2011.

  86. Ecological climate suitability division for citrus in Southern Shaanxi based on GIS
    Zhu, L., Li, X., Zhu, Y., He, W., Bai, Q.
    Chinese Journal of Agrometeorology, 32(01), 122, 2011.

  87. 基于 GIS 的陕南柑桔气候生态适宜性区划
    朱琳, 李星敏, 朱延年, 贺文丽, 柏秦凤
    中国农业气象, 32(01), 122, 2011.

  88. 强对流风暴中同质冻结增温的直接探空观测
    徐小红, 余兴, 戴进, 刘贵华, 朱延年, 岳治国
    大气科学学报, 34(4), 416-422, 2011.

  89. Direct observation from sounding of the warming caused by homogeneous freezing in a severe storm
    徐小红
    Trans Atmos Sci, 34(4), 416-422, 2011.

  90. 秦巴山区根类中药材气候适宜性区划
    朱琳, 陈明彬, 朱延年, 李再刚, 杨丽霞, 郑晓华
    陕西气象, 3(1), 2, 2009.

  91. 基于 GIS 气候资源评价及区划研权重因子评价
    朱琳, 郭兆夏, 朱延年
    海洋学研究, 26(1), 65-71, 2008.

  92. 基于 GIS 陕南商洛地区农业气候资源垂直分层
    朱琳, 朱延年, 陈明彬, 刘敏峰, 郭兆夏
    应用气象学报, 18(1), 108-113, 2007.

  93. 基于遥感的延安市宝塔区土地利用变化研究
    卓静, 邓凤东, 刘安麟, 朱延年
    测绘技术装备, 9(3), 17-19, 2007.

  94. 秦巴山区花果种子类中药材气候适宜性区划
    朱琳, 陈明彬, 朱延年, 李再岗, 杨丽霞, 郑晓华
    陕西气象, 6, 25-29, 2006.

  95. 基于 GIS 气候资源评价及区划研究——以陕西省苹果气候区划为例
    朱琳, 郭兆夏, 朱延年
    陕西气象, 23-26, 2005.

  96. 陕西蒲城第二发电厂建设区污染气象特征分析
    陈建文, 姜创业, 吴素良, 胡琳, 朱延年
    陕西气象, 5(1), 1, 2005.

  97. 基于 GIS 商州市农业气候区划信息服务系统
    郭兆夏, 朱琳, 陈明彬, 朱延年, 刘敏锋
    陕西气象, 7(3), 6, 2004.

  98. 基于 GIS 商洛山区日照时数模拟
    朱延年*, 朱琳, 郭兆夏, 陈明彬, 刘敏峰
    陕西气象, 4, 10-13, 2004.

  99. 基于 GIS 商洛市热量资源分析及区划
    朱琳, 朱延年, 陈明彬, 刘敏锋, 郭兆夏
    陕西气象, 3(2), 6, 2004.

  100. 合阳县经济林果区划
    朱琳, 郭兆夏, 杨文峰, 郑小华, 朱延年
    陕西气象, 2, 2003.

研究经历

  1. 2025.01-2028.12,海洋低云中尺度形态变化对云辐射效应的影响研究,国家自然基金面上项目,总经费60万,主持;

  2. 2021.01-2024.12,东亚海洋低云气溶胶--辐射卫星观测定量研究, 国家自然基金面上项目,总经费70万,主持;

  3. 2016.01-2019.12,夏季秦岭地形降水机理观测与模拟研究,国家自然基金面上项目,总经费95万,主持;

  4. 2018.12-2021.12,人工影响天气基础理论、数值模式技术研究——冰雹云研究,科技部国家重点研发计划,经费:1295245万),参与,项目冰雹云研究课题核心骨干。主要负责卫星反演冰雹云云微物理特征,云相态识别算法开发等;

  5. 2015.10-2018.09,中国和以色列气溶胶--降水相互作用的定量研究,国家自然基金国际合作与交流项目,总经费240万,参加,核心骨干;

  6. 2013.01-2017.12,秦巴山区云降水梯度观测与应用研究,科技部公益性行业专项重点项目,总经费448万,参加,核心骨干;

  7. 2014.01-2017.12,第三次青藏高原科学试验-边界层与对流层观测,云微物理观测和卫星反演专题,科技部公益性行业专项重大项目,总经费34万,参加,核心骨干;

  8. 2014.01-2017.12,南方大范围云系人工增雨作业潜力与作业技术研究,云微物理结构的卫星反演技术研究专题,科技部公益性行业专项,总经费30万,参加,核心骨干;

  9. 2009.09-2011.12,基于GIS的陕西省精细化农业气候资源及区划,陕西省科学技术厅陕西“13115”科技创新工程重大科技项目,总经费65万,参加,核心骨干;

  10. 2012.01-2012.12,污染气溶胶对关中地区云降水的影响,陕西省气象局,0.7万,主持;

  11. 2010.01-2012.12,秦巴山区可降水云的云微物理及云降水过程综合分析,国家自然科学基金面上项目,55万,参加;

  12. 2010.01-2010.12,秦岭地区气溶胶与雾的影响的研究,陕西省气象局,0.6万,主持;

  13. 2009.01-2009.12,人工增雨作业条件的卫星反演应用研究,中国国家气象局,10万,参加;

  14. 2003.01-2004.12,人工消冷雾新技术试验与研究,科技部,50万,参加;

  15. 2002.01-2004.12, 陕南秦巴山区中草药气象服务业务系统建设及推广,陕西省气象局,8万,参加;

获奖

  1. 2021: 第十三届“陕西青年科技标兵” (全省15人)

  2. 2021: 第十三届陕西青年科技奖获 (全省100人)

  3. 2016: 陕西省科学技术奖,三等奖(排名3

  4. 2013:陕西省农业技术推广成果奖,二等奖(排名6

  5. 2013:陕西省科学技术奖,二等奖(排名8

  6. 2012:陕西省科学技术奖,三等奖,(排名6

  7. 2012:陕西省农业技术推广成果奖,一等奖(排名11

  8. 2010:陕西省农业技术推广成果奖,二等奖(排名7

  9. 2018.06:陕西省气象局第一批副首席科学技术专家

  10. 2012.01:陕西省‘三五’人才工程第三层次

  11. 2012.08-2015.12:秦巴山区云降水机理研究创新团队,核心骨干。

  12. 2016.08-2017.12:云降水与卫星反演创新团队,核心骨干

  13. 2015:陕西省气象局第二批青年拔尖人才



  • 南京大学仙林校区大气科学楼
    江苏省南京市栖霞区仙林大道163号
    210023